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We discuss how to combine a front tracking method with dimensional splitting to
solve systems of conservation laws numerically in two space dimensions. In addition
we present an adaptive grid refinement strategy. The method is unconditionally stable
and allows for moderately highCFL numbers (typically 1–4), and thus it is highly
efficient.

The method is applied to the Euler equations of gas dynamics. In particular, it is
tested on an expanding circular gas front, a wind tunnel with a step, a double Mach
reflection, and a shock–bubble interaction. The method shows very sharp resolution
of shocks. c© 1999 Academic Press
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1. INTRODUCTION

Front tracking has proved to be an efficient tool for analyzing hyperbolic conservation
laws rigorously, both scalar equations and systems, in one space dimension.

We demonstrate how to use front tracking for systems of conservation laws as an uncon-
ditionally stable numerical method in two space dimensions, and we test it on the Euler
equations of gas dynamics.

Let us first discuss the method of front tracking. Consider the hyperbolic conservation law

ut + f (u)x = 0, u|t=0 = u0. (1)

If we approximate the initial data by a step function, that is, a piecewise constant function,
the problem is locally reduced to solving a series of problems with Riemann initial data,
i.e., a single jump separating two constant states.

In the case of general systems, the solution of a Riemann problem is locally character-
ized by the Lax construction, where one has a set of wave curves forming a local system of
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coordinates in state space around two nearby constant states. Shocks and contact disconti-
nuities are unchanged in the front tracking technique. However, if two states are connected
by a rarefaction wave, we sample points along the rarefaction curve and approximate the
(continuous) rarefaction wave by a (discontinuous) function with several small jumps. In
this way the approximate solution is a step function for any fixed time. We denote all dis-
continuities in the solution as fronts. When two fronts collide we will have another local
Riemann problem, which can be solved using the same construction. In this way the solution
will remain a step function. Notice that there is no associated time step in the construction,
and hence the method is unconditionally stable. For strictly hyperbolic systems and for
sufficiently small initial data, one can prove that the approximate solution converges inL1

loc

to a weak solution of (1) as the sampled points approximate the rarefaction wave better and
the approximate initial data approachesu0; see Risebro [25] and Bressan and LeFloch [5].
A modification of this method, the wave front tracking method of Bressan, has recently
been used to show stability, and thereby uniqueness, of solutions of (1); see [4, 5].

It is natural to explore the front tracking method numerically. Risebro and Tveito
[26, 27] and Langsethet al.[19] have presented one-dimensional numerical implementions
of front tracking for systems. In [26] front tracking is applied to the nonstrictly hyperbolic
system of polymer flooding. Some examples of gas dynamics in one dimension are studied
in [17, 27]. In [19], a modified version of the earlier schemes is introduced and the method
is compared with Godunov methods. Implementation issues are discussed by Langseth in
[17]. See also the related large time step method of LeVeque [21]. For a recent application
of the front tracking method to the shallow water equations we refer to [12, 13].

A fundamental issue with the front tracking method is the potential buildup of infinitely
many fronts in finite time. Analytically this is discussed in [2, 5, 25]. Numerically, it is
treated as follows. At each Riemann problem we measure the total variation of each ele-
mentary wave. Employing preset user-defined cutoff values, small waves are eliminated,
thus resulting in finitely many fronts globally in time.

Here we extend the application of front tracking as a numerical method to multidimen-
sional problems by using dimensional splitting. The resulting method is unconditionally
stable; that is, the time step is not restricted by the spatial discretization. Front tracking is
intrinsically grid-independent. In order to use dimensional splitting, we introduce a rectan-
gular Cartesian grid and solve the conservation laws in each coordinate direction, followed
by a projection onto the grid. In the scalar case one can prove that the corresponding method
converges to the unique solution; see Holden and Risebro [15]. Here we exclusively discuss
the two-dimensional case, but conceptually the approach works in higher dimensions as
well. The corresponding computer code is referred to asDIMSPLIT. Lie et al. [22] have
recently developed an adaptive grid refinement in the context of front tracking for the
scalar case. Here we implement grid refinement in the case of systems, and this code is de-
notedGRIDREF. Both codes include common boundary conditions like absorbing, periodic,
Dirichlet, and reflective boundary conditions.

It is important to stress that front tracking, as the term is used here, differs from the
front tracking technique used by Glimm and co-workers; see, e.g., [6]. The front tracking in
[4, 25] is inherently a method for conservation laws in one space dimension, whereas the
front tracking method of Glimmet al. in principle is a method that tracks discontinuities, or
fronts, in several space dimensions. These fronts are treated as independent computational
degrees of freedom. They are defined by the solution and develop dynamically with it.
Therefore, an implementation of this method in several space dimensions ismuchmore
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difficult than implementing dimensional splitting using front tracking (in our sense of the
term). However, the dimensional splitting approach is more versatile and does not require
any special coding for new initial/boundary value problems.

The random choice method [10] has been extended numerically to several space dimen-
sions using dimensional splitting by Chorin [7] and Colella [8, 9]. However, they found that
the method will not converge and reportedO(1) errors near discontinuities due to the ran-
dom sampling. Colella [9] suggested using a conservative, low-order method in the vicinity
of discontinuities, and the Glimm scheme elsewhere, to reduce the problem.

Let us now turn to the discussion of the test cases. The first example, suggested by Toro
[28], concerns an outward explosion caused by a circular region of high-density gas. The
radial symmetry allows us to test the effects coming from the Cartesian grid. The front
tracking method gives sharp resolution of shock fronts, but shows some minor grid ori-
entation effects. Moreover, a convergence study indicates convergence to the nonsmooth
solution of this problem at a rate of 0.7–0.8.

In the second example we study a wind tunnel with a small step which is hit by a planar
shock with speed Mach 3; see Woodward and Colella [29]. Here the corner of the step
is a singular point in the flow which is treated as in [29] by adjusting the physical values
near the corner. The front tracking method resolves the major flow properties accurately.
The adaptive grid refinement codeGRIDREFreduces the runtime substantially compared to
DIMSPLIT with the same accuracy.

The next example addresses the question of a planar shock with speed Mach 10 hitting
a reflecting wall, resulting in the familiar double Mach reflection. Front tracking recovers
the finer features of the flow, and againGRIDREFis faster.

Both the second and the third example are run on the same grids as those of Woodward
and Colella [29], but with substantially higherCFL numbers.

In the final example we consider a planar shock hitting a circular region of gas with
low density. A three-dimensional version of this problem was analyzed by Langseth and
LeVeque [18]. The interaction creates complicated wave patterns. Front tracking is here
compared with different wave propagation schemes from theCLAWPACK software [20]
developed by LeVeque. We observe that front tracking is better than the first-order method
and performs similarly to the second-order method with minmod limiter but uses only 1/10
of theCPUtime.

Quirk [24] has identified certain fundamental problems with Godunov-type numerical
methods, some of which we have encountered here. The front tracking method may generate
nonphysical expansion shocks (as can be seen in Figs. 7–9). Such shocks are common to
most difference and volume techniques. Moreover, generation of postshock oscillations
requires the use of moderateCFL numbers. We have not been able to amend these problems
in a completely satisfactory way.

Nevertheless, front tracking has proved to be a highly accurate and efficient numerical
technique which compares well with second-order methods.

2. THE ONE-DIMENSIONAL FRONT TRACKING METHOD

We start by giving a brief explanation of the front tracking method; a thorough description
can be found in, e.g., [14, 25, 27], and implementation issues are discussed in [17]. Consider
the system of conservation laws given by (1). The idea behind front tracking is to construct an
approximate solution within the class of piecewise constant functions. First we approximate
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the initial datau0 by a step function (piecewise constant function)u10 , where1measures the
approximation. This defines a family of local Riemann problems. The solution of each of
these Riemann problems consists of constant states separated by elementary waves (rarefac-
tion waves, shock waves, and contact discontinuities). For the Riemann problem(uL , uR)

we write the solution asuL w1→ u1 w2→ u2 · · · wN→ uR, where the notationu1 w→ u2 means that
the constant statesu1 (left) andu2 (right) are connected by an elementary wavew.

The solution of the Riemann problem is scale invariant and we can express it as a function
of ξ = x/t . The next step in the front tracking algorithm is to approximate the solution of each
Riemann problem by a step function, whereδ gives the approximation along rarefaction
waves,

uδ(ξ) = ui for ξi < ξ < ξi+1, i = 1, . . . , N, u0 = uL , uN+1 = uR. (2)

Assume that we have approximateduL w1→ u1 · · · w j→ u j ; that is, we have definedξi for
i = 1, . . . , k such thatuk= u j ; see Fig. 1. If waveu j w j+1−→ u j+1 is a shock (or a contact
discontinuity) we define

uk+1 = u j+1, ξk+1 = σ(u j , u j+1),

whereσ(u j , u j+1) is the shock speed given by the Rankine–Hugoniot condition. Ifw j+1

is a rarefaction, we define

uk+l = R j+1(u
j ; l δ̃), ξk+l = 1

2
(λ j+1(uk+l−1)+ λ j+1(uk+l )), l = 1, . . . ,M,

whereR j+1(u; ·) is the ( j + 1)th rarefaction curve emanating fromu; λ j+1(u) is the
( j + 1)th eigenvalue of the matrixf ′(u); andλ j+1(u j+1)− λ j+1(u j )=M δ̃, δ̃ ≈ δ. Here
uk+M = u j+1. Using this approach, we get a sequence of constant states separated by moving
discontinuities for each local Riemann problem. The discontinuities, which we will refer
to as fronts, can now be collected globally. This is typically implemented as a linked list
of data objects representing the fronts. We track the outgoing fronts up to the time of the
first wave interaction. This interaction gives a new Riemann problem which we again can
approximate by a step function, and so on. The front tracking algorithm thus consists of
solving Riemann problems (rearranging the list of objects) and tracking fronts until they
collide (updating a collision list).

Since the approximate solution of the Riemann problem is nonconservative, due to the
replacement of the rarefaction wave by a step function, the overall method will not be
conservative either. However, the conservation error is of orderO(δ) [19].

In order to avoid a possible infinite buildup of fronts, we have to do some data reduction.
Several approaches have been suggested [2, 17, 19, 25]. Here we will apply a strategy
inspired by Glimm’s interaction estimate [10]; see [17]. Define the size of thej th wave
connecting statesu j andu j+1 as1 j =

∑n
k= 1|u j+1

k − u j
k|/K j , whereK j is the number

of components that are nonconstant over the wave. The wave structure of every Riemann
problem is always computed, and wavej is included provided1 j > cδ, for a given positive
constantc. In this way we will have only finitely many fronts for all time.

2.1. Boundary Conditions

During the tracking phase of the algorithm, a boundary is represented as a front with a
special identifying tag. This way, the algorithm for computing possible collisions need not
distinguish whether a front collides with a boundary or another front. Moreover, this easily
allows for moving boundaries.
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FIG. 1. Adding a new wavew j+1 to the approximate Riemann solution given the approximation of waves
w1, . . . , w j (top); wavew j+1 is a shock or a contact discontinuity (middle) or a rarefaction wave (bottom).
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In general there are three kinds of boundary conditions that may be imposed on any
system.Absorbingboundaries allow the passage of waves without any effect on them
and are realized by simply removing fronts that propagate out of the boundary and then
updating the collision list. Forperiodicboundaries, the fronts that collide with a boundary
are removed from one end of the front list and inserted at the other. Then the collision list
is updated.Dirichlet boundary conditions mean that the boundary value is prescribed. In
this case, Riemann problems are solved as above, with the fixed value as either left or right
state. However, only fronts that propagate into the domain are inserted into the front list. For
some systems it also makes sense to talk aboutreflectiveboundary conditions, for instance
for the Euler equations or other systems with a velocity component. This case is handled as
for Dirichlet boundaries, except that only one state is given in the Riemann problem. The
other state is a fictitious state, determined from the known state inside the domain. For
the Euler equations this fictitious state is obtained by reversing the sign of the velocity
component. The same construction is used forsymmetryabout lines.

2.2. Front Tracking with Projection

The front tracking method described above is grid-independent in the sense that a grid
is only used to describe the piecewise constant initial data. However, when the method is
extended by operator splitting to equations with source terms [17] or to multidimensional
problems by dimensional splitting (see Section 3) it is convenient to introduce a fixed
Cartesian grid onto which the front tracking solution is projected. Unfortunately, this pro-
jection has certain undesired effects that we will discuss next.

The creation of postshock oscillations by numerical schemes has been studied by several
authors (see, e.g., [1]), especially for slowly moving shocks. For the front tracking method
(in one dimension) the mechanism behind this phenomenon is easily revealed; Fig. 2 shows

FIG. 2. Illustration of how postshock oscillations are created; fronts in(x, t)-plane (left), projected solution
for each step (middle), and difference from the true solution projected onto the same grid (right).
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the creation of postshock oscillations for a single propagating shock. When a shock is
projected onto the grid, we introduce small waves in the passive families, unless the shock
exactly traverses an integer number of grid cells in each time step. These waves produce
(small) oscillations and increase the number of interactions that need to be resolved, thus
slowing down the algorithm. Note that this phenomenon is observed for all shock speeds,
not only slowly moving shocks (see also [1]).

For the results reported for multidimensional problems in Section 4, this effect seems
to have little influence on the (visual) quality of the solutions. (In fact, we observed a
more pronounced effect for one-dimensional problems.) At moderateCFL numbers, the
(multidimensional) numerical diffusion introduced by the projections seems to dampen the
oscillations, as does the data reduction.

3. TWO DIMENSIONS: DIMENSIONAL SPLITTING

For the two-dimensional conservation law

ut + f (u)x + g(u)y = 0, u(x, y, 0) = u0(x, y), (3)

with entropy solutionu(t)=S(t)u0, the dimensional splitting approximation is defined as

S(n1t)u0(x, y) ∼= [Sg(1t)S f (1t)]nu0(x, y) (Godunov)

S(n1t)u0(x, y) ∼= [S f (1t/2)Sg(1t)S f (1t/2)]nu0(x, y) (Strang),

whereS f (t)u0 andSg(t)u0 are the solutions of (1) with flux functionsf andg, respectively.
In numerical computations,S f andSg are replaced by some numerical method.

For scalar equations Holden and Risebro [15] proposed to combine Dafermos’ method
with dimensional splitting on a Cartesian grid to yield anunconditionallystable method.
The algorithm is as follows: Solve along each row in the grid. Project the solution back onto
the grid. Solve along each column of the grid, and so on. This method has been applied to
simulate flow of hydrocarbons in a porous medium; see Bratvedtet al. [3]. The only result
reported in the literature for a similar front tracking approach to systems is a simple test
problem by Langseth [17] for the Euler equations of gas dynamics. (Preliminary results for
the double Mach reflection problem were reported in [22].)

Lie et al. [22] recently observed that this front tracking method is highly efficient for
scalar problems with absorbing boundary conditions, due to its lack of aCFL condition
and the relatively simple dynamics of these problems. They also proposed a method for
improving the spatial accuracy by using (one-level) adaptive grid refinement on a fixed
regular Cartesian grid. The grid may contain a local regular partition at any cell; see
Fig. 3. These subpartitions may appear or disappear during the projection step or remain
fixed throughout the computation.

The inclusion of local refinement requires a reformulation of the front tracking algorithm.
Inside each tube of coarse or refined grid blocks we will now have a local list of moving
fronts (discontinuities). At the interface between a coarse and a refined grid block, we insert
a special front, hereafter referred to as a static front. This front connects the coarse tube
with the refined tubes; see Fig. 3. Altogether, this gives a global list, where each local list
can be updated as usual except for the static fronts.

At interfaces initially, we solve Riemann problems as described in Fig. 4. For each refined
tube, the Riemann problem is given by the value in the first refined cell and the connected
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FIG. 3. (Left) Grid refinement by local partitioning of a regular Cartesian grid. (Right) Part of a front list
containing two parallel refined tubes. The shaded boxes represent the static fronts.

coarse cell. All fronts going into the refined tube are inserted into the corresponding local
front list. Then all fronts going into the coarse tube (possibly from different Riemann
problems) are assigned new states according to the spatial average across the coarse tube,
collected in a list of increasing wave speeds, and inserted into the local list for the coarse tube.

During the tracking, collisions at static fronts are handled as follows: Fronts coming in
from a coarse part are copied and inserted into each connected refined list. Fronts coming
in from refined tubes are collected, assigned new states according to the spatial average,
and inserted into the connected coarse list; see Fig. 4.

The tracking step is followed by a projection step. In this step we measure theone-
dimensionaltotal variation of the front tracking solution and use this as a monitor function.
A coarse grid block is refined if the variation inside the block in the direction we are solving
exceeds TVmax. After the projection we postprocess the grid to remove unnecessarily refined
blocks. If thetwo-dimensionaltotal variation over all refined cells inside a coarse block
is below TVmin, the block is made coarse. This is the adaptive part of the grid refinement,
where(TVmin,TVmax) are two adjustable parameters. The choice of adaptivity criterion is
not special and could, for instance, be replaced by a heuristic monitor function based on
physical quantities. In addition it pays off to include some kind of extra postprocessing to
reduce the number of interfaces between coarse and refined blocks. In this step some blocks
are refined to make larger continuous patches of refined blocks. Moreover, one can include
a preprocessing step to predict movement of refined structures (based on cheap estimates
of wave speeds).

4. NUMERICAL RESULTS

The Euler equations formthe most frequently used hyperbolic system for testing new
numerical methods. In two dimensions they read

ρ

ρu
ρv

E


t

+


ρu

ρu2+ p
ρuv

u(E + p)


x

+


ρv

ρuv

ρv2+ p

v(E + p)


y

= 0. (4)

Hereρ denotes the density,u andv denote the velocity in thex andy directions,p is the
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FIG. 4. (Top four) A Riemann problem at an interface between a coarse tube and two refined tubes is
decomposed into two simple Riemann problems: solid lines represent(a, c) and dashed lines(b, c). Fronts
propagating into coarse part are assigned new states by cross-sectional average. (Bottom four) The static front
during tracking: Colliding fronts from the refined part are assigned new states. Colliding fronts from the coarse
part are copied.
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pressure, andE is the total energy (kinetic plus internal energy). We assume that the gas
is ideal and polytropic. Then the energy is given byE= ρ(u2+ v2)/2+ p/(γ − 1). In all
computations we useγ = 1.4.

For this nonlinear system there are three elementary waves: shocks (S), rarefactions (R),
and contact discontinuities (C). The possible wave configurations are SCS, SCR, RCR, and
RCS. We will apply a very efficient Riemann solver reported by Gottlieb and Groth [11].
In this solver, all computations are performed in the nonconserved variables(p, u, v,a),
wherea denotes the sound speeda2= γ p/ρ. However, the projection step in our method
proceeds in conserved variables. This induced mapping and remapping of the variables
(according to explicit formulas) means a slight decrease in the efficiency of the code.

The eigenvalues of the one-dimensional version of (4) areu andu± a. These are easily
computed and may be used as an efficient tool for predicting the movement of refined
structures during a preprocessing step.

We consider four different test cases. First, a problem with cylindrical symmetry is used
to evaluate grid alignment effects in the method. The next two problems, flow past a forward
facing step and reflections at a wedge, were proposed by Woodward and Colella [29] and are
well established as test cases in the literature. In the fourth problem we consider numerical
viscosity and the generation of vortices when a planar shock interacts with a region of low
density. Comparisons are made with wave propagation methods inCLAWPACK [20], which
is coded in Fortran. All other methods are coded in C.

In the following, the discretization parameters will be equal in both spatial directions,
unless stated otherwise. If local grid refinement is included, the ratio between the coarse
and the refined grid size is 2 in each direction. In all examples we use auniformCartesian
grid.1 This is not a prerequisite, and the front tracking codes work on any regular Cartesian
grid.

4.1. A Cylindrical Explosion Problem

Problems with cylindrical symmetry are good test examples for Cartesian grid methods,
since reliable numerical solutions can easily be computed for the equivalent one-dimensional
inhomogeneous problems. The following test case has been proposed by Toro [28]. Consider
a square domain [−1, 1] × [−1, 1]. The initial data are constant in two regions separated
by a circle of radius 0.4 centered at the origin. Inside the circle we haveρin= pin= 1.0 and
zero velocity. Outside the circleρout= 0.125, pout= 0.1, and the velocities are zero. We
impose absorbing boundary conditions.

The solution consists of a circular shock wave propagating outward from the origin, fol-
lowed by a circular contact discontinuity propagating in the same direction, and a circular rar-
efaction wave traveling toward the origin. As time evolves, the shock wave becomes weaker.
The contact discontinuity also becomes weaker, and at some time it stops and then travels
inward. The rarefaction wave reflects at the center, as a rarefaction wave, and then overex-
pands and creates an inwardly propagating shock wave. The shock implodes into the origin,
reflects, and travels outward, colliding with the contact discontinuity surface, and so on.

For the computations, we used a uniform 101× 101 grid. The initial data were assigned
according to the average over each cell. A reference solution was generated by solving
the corresponding one-dimensional inhomogeneous problem on a fine grid, using front

1 All simulations were carried out on a SUN Ultra 4 workstation with 1024 MB RAM and two 300-MHzCPUs.
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FIG. 5. Comparison between the one-dimensional radial solution (solid line) and a scatter plot (physical
quantities are plotted against the distance from origin for each grid cell) of the two-dimensionalDIMSPLIT solution
at timet = 0.2.

tracking combined with operator splitting for the source term. Figure 5 shows a comparison
of the one-dimensional radial solution at timet = 0.2 and a scatter plot the two-dimensional
solution computed byDIMSPLIT with 10 time steps. This gives aCFLnumber varying between
1.2 and 2.2. The parameters for the Riemann solver areδ= 0.1 andc= 0.01. As expected,
the symmetry is not preserved perfectly. The shock wave is typically resolved within two
grid cells and the contact discontinuity by three or four cells; see Fig. 6. The same problem
can be used to investigate the order of convergence for the method. The solution is computed
by DIMSPLIT with N time steps on a 10N × 10N grid. In Table 1 the relativeL1 errors are
given for N= 5, 10, 20, and 40. The errors are computed by comparing with the one-
dimensional reference solution, using a standard four-point numerical quadrature for each
grid cell. Convergence rates are estimated by the formula

rate= log2

(
error(1x)

error(1x/2)

)
.

Since the solution is nonsmooth, we cannot expect to retain first order convergence. How-
ever, the observed rates are well above 1/2; see [22] for a discussion of the scalar case.

4.2. A Mach 3 Wind Tunnel with a Step

The test case begins with a Mach 3 flow in a wind tunnel. The tunnel is 1 length unit
high and 3 length units long. The step is 0.2 units high and is located 0.6 units from the
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FIG. 6. Computed density along the linesy= 0 (upper) andx= y (lower). The solid line represents the
reference solution.

left-hand end of the tunnel. Inflow boundary conditions are assumed at the left-hand side,
and absorbing conditions at the right-hand side. The walls are assumed to be reflective. The
corner of the step is a singular point in the flow. We have adopted the technique proposed by
Woodward and Colella [29] to reduce the influence of this point: We reset the values in six
grid cells on top of the step, so that the entropy and the sum of enthalpy and kinetic energy
per unit mass have the same values as in the grid cells just to the left and below the corner.

Figure 7 shows the density at timet = 4.0 computed byDIMSPLIT on three different grids
(1x= 1/20, 1/40, 1/80) corresponding to those used by Woodward and Colella [29]. The
number of time steps is 160, 320, and 640, respectively, giving aCFL number approximately
equal 2.0 in each step. The parameters for the Riemann solver areδ= 0.1 andc= 0.01.

The general shape and position of the shocks are accurately represented byDIMSPLIT.
The shocks are thin, and thus some numerical instabilities of strong shocks are evident at

TABLE 1

Runtime and Errors in Density, Radial Momentum, and Energy

for the Radially Symmetric Problem

Grid Steps ρ ρur E Runtime (s)

50 5 1.873× 10−2 4.372× 10−2 1.590× 10−2 0.4
100 10 1.124× 10−2 2.525× 10−2 9.022× 10−3 2.3
200 20 6.751× 10−3 1.475× 10−2 5.006× 10−3 15.3
400 40 4.124× 10−3 9.246× 10−3 2.931× 10−3 43.2

Averaged rate: 0.73 0.75 0.81 2.3
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FIG. 7. Flow past a forward facing step computed byDIMSPLIT.

the bottom and behind the Mach stem, where the shocks are nearly aligned with the grid.
The contact discontinuity emerging from the Mach stem is present on all grids, but is spread
somewhat as it moves away from the three-shock interaction point. On the other hand, the
weak shock emerging from the corner of the step and the discontinuity formed when this
shock hits the reflected shock is only represented on the finest grid.

The results are slightly marred by an unphysical expansion shock embedded in the rar-
efaction fan at the step. The same effect is produced by Godunov’s method [29]. Although
the front tracking method coincides with Godunov’s method for lowCFL numbers (less than
1/2), they are distinct for the results reported here. For the runs in Fig. 7 the total number
of wave interactions is 591,417, 3,942,300, and 28,601,224, respectively.

Increasing the number of time steps for a fixed spatial discretization leads to wider
shock fronts and less accurate representation of the Mach stem; see Fig. 8. Decreasing the
number of time steps gives sharper resolution of shock fronts and contact discontinuities,
but also introduces more numerical instabilities, which gradually will destroy the solution.
Choosing the appropriate number of time steps is therefore a subjective and problem-
dependent decision, upon which we do not venture to give general advice. However, notice
that with many short time steps, most of the computational time will be spent solving initial
Riemann problems, whereas with few, but long, time steps, most of the computational time
is spent resolving wave interactions. An optimum, with respect to runtime, is therefore
obtained somewhere in between; see Table 2.

Similar results obtained byGRIDREFare shown2 in Fig. 9. The number of time steps are
320, 640, and 1280, respectively, giving an approximateCFL number of 1.0 relative to the

2 The contours are plotted in Matlab by patching contour plots on the coarse and the refined grid. As a result,
some contour lines are discontinuous or entwine at interfaces between coarse and refined cells.
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FIG. 8. The effect of different time steps inDIMSPLIT for 1x= 1/40; from top to bottom, 1280 (Godunov’s
method), 320, and 160 time steps.

coarse grid and 2.0 relative to the fine grid. The coarsest grid in Fig. 9 corresponds to the
middle grid in Fig. 7, and the middle grid in Fig. 9 to the finest grid in Fig. 7. The TV
threshold parameters used in the projection are(TVmin,TVmax)= (0.5, 2.0). Initially the
grid is refined in an L-shaped domain placed upside-down around the corner of the step.

We see thatGRIDREFproduces equally good results for the two runs where the size of the
refined grid cells corresponds to those used byDIMSPLIT. The runtime, however, is reduced
by approximately 30% on the coarse and 50% on the middle grid. On the finest grid we
see that the rarefaction shock has nearly disappeared, and the contact discontinuity arising
from the step is much better resolved. Figure 10 shows the adaptive grid after the projection
at timet = 4.0. Note how the refinement neatly aligns with the major shocks. For fixed TV
parameters, this effect becomes more pronounced as1x decreases. This explains the larger
improvement in efficiency for the middle grid.

4.3. Double Mach Reflection of a Strong Shock

This test problem describes the reflection of a planar Mach shock in air hitting a wedge.
The setup is of a Mach 10 shock which initially makes a 60◦ angle with a reflecting wall.

TABLE 2

Runtimes in CPU Seconds for the Forward Facing Step

Figure 7 Figure 8 Figure 9

Top 7.15× 100 1.09× 102 3.34× 101

Middle 4.95× 101 7.15× 100 1.76× 102

Bottom 3.81× 102 6.68× 101 8.83× 102
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FIG. 9. Flow past a forward facing step computed byGRIDREF.

Ahead of the shock the undisturbed air has density 1.4 and pressure 1.0. The computational
domain is [0, 4] × [0, 1] and the reflecting wall lies at the bottom of the domain starting
at x= 1/6. The short region fromx= 0 to 1/6 and the left boundary are assigned values
for the initial postshock flow. Along the upper boundary, the flow values are set to describe
the exact motion of the Mach 10 shock. At the right boundary, absorbing conditions are
imposed. See [29] for a more detailed description of the setup.

Figure 11 shows the density at timet = 0.2 computed byDIMSPLIT on three different
grids (1x= 1/30, 1/60, 1/120) corresponding to those used by Woodward and Colella
[29]. The number of (equally spaced) time steps is 35, 70, and 140, respectively, giving
a CFL number varying between 2.0 and 3.5. The parameters for the Riemann solver are
δ= 1.0 andc= 0.01. The runtimes are 2.0, 12.8, and 82.3CPUseconds, respectively.

The double Mach reflection and the jet produced by it are clearly discernible on the
coarsest grid, and adequately described on the middle grid. The weak shock generated
at the kink in the main reflected shock and the contact discontinuity emerging from the
three-shock interaction are fairly broad. This is improved on the finest grid.

Similar results obtained byGRIDREFare shown in Fig. 12. The number of time steps is
70, 140, and 280, respectively, givingCFL numbers in the interval (1.0, 1.75) relative to the

FIG. 10. The adaptive grid after the final projection for1x= 1/40.



FIG. 11. A double Mach reflection at a wedge computed byDIMSPLIT.

FIG. 12. A double Mach reflection at a wedge computed byGRIDREF.
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coarse grid and (2.0, 3.5) relative to the fine grid. The TV threshold parameters used in the
projection are(TVmin,TVmax)= (5.0, 20.0). Initially the grid is refined around the shock.
The runtimes are 11.8, 67.0, and 358CPUseconds, respectively.

On the coarsest and the middle grid the solution is resolved as accurately as on the middle
and the finest grid in Fig. 11. On the coarsest grid 54% of the grid cells are refined and
there is only a slight reduction in runtime (8%). However, on the middle grid the fraction
of refined cells is lower (35%), giving a 18% reduction in the runtime. On the finest grid
all features in the solution are accurately described. Here 21% of the grid cells are refined.
Notice that in all runs for bothDIMSPLIT andGRIDREF, there is hardly a trace of numerical
instabilities. However, the principal Mach stem is slightly kinked.

4.4. A Shock–Bubble Interaction

In this example we consider the interaction between a planar shock and a circular region
of low density. The example is a two-dimensional version of a three-dimensional problem
studied by Langseth and LeVeque [18]. The purpose is to illustrate the induced vorticity
and mixing when a shock wave runs through an inhomogeneous medium.

The setup is as follows; cf. Fig. 13. A circle with radius 0.2 is centered at (0.3, 0.0). The gas
is initially at rest and has unit density and pressure. Inside the circle the density is 0.1. The
incoming shock wave starts atx= 0 and propagates in the positivex-direction. The pressure
behind the shock is 10, giving a 2.95 Mach shock. The domain is [−0.1, 1.5]× [−0.5, 0.5]
with symmetry about thex axis.

Figure 13 shows five snapshots at timest = 0.0 to t = 0.4, computed byDIMSPLIT with
1x= 1/400 and 256 equally spaced time steps. After hitting the bubble, the shock wave
separates into a reflected smooth wave and a penetrating shock wave. Due to the higher sound
speed inside the low density region, the latter wave will speed up toward the undisturbed
bubble wall ahead, where it reflects. At timet = 0.1 the incident shock has captured the
bubble and deformed it. A complex pattern of discontinuities has formed at the top and
bottom of the bubble. Near the front wall we see the reflected wave, and near the back

FIG. 13. Emulated Schlieren images of a shock–bubble interaction.
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FIG. 14. Emulated Schlieren images of a shock–bubble interaction at timet = 0.4 on a 1/200 grid.
(Top) Simulations withCLAWPACK. Left: (T1,1): 1058 s. Middle:(T2,2), minmod: 1988 s. Right:(T2,2), superbee:
2351 s. (Bottom) Simulations withDIMSPLIT and GRIDREF. Left: DIMSPLIT, n= 128: 185 s. Middle:GRIDREF,
n= 100,1x= 1/100: 141 s. Right:GRIDREF, n= 200,1x= 1/200: 780 s.

wall the first traces of vortex formation. At timet = 0.2 the remnants of the bubble are
contained inside two rotating semicircular vortex regions that are connected by a “duct.” At
time t = 0.3 the “duct” has closed, the vortices have separated, and new secondary vortices
have formed.

Resolving the vorticity is a question of resolution and numerical viscosity. We find
it futile to discuss the resolution on different grids. Instead we focus on the numerical
viscosity in our two schemes. We compare our computations with computations using
CLAWPACK [20] on the same grid.CLAWPACK is a collection of wave propagation methods
where Riemann problems are solved at cell interfaces and limiters are applied to suppress
oscillations from second-order terms. To model cross derivatives, Riemann problems are
also solved in the transverse directions. The software allows the user to choose between first-
and second-order and different limiters. Figure 14 shows computations byDIMSPLIT and
GRIDREF, compared with the unsplit first-order method (T1,1) in CLAWPACK and the unsplit
second-order method (T2,2) with minmod limiter (the most diffusive limiter) and superbee
limiter (the most compressive).CLAWPACK T1,1 is clearly the most dissipative method.
CLAWPACK T2,2 minmod andDIMSPLIT produce very similar results, but the latter gives a
more narrow representation of the leading shock wave.GRIDREFproduces equal results on
a 1/100 grid asDIMSPLIT does on the 1/200 grid, but with a 25% reduction in runtime. The
front tracking method spends most of the computational time where interactions take place
and is thus highly effective on problems where interactions are restricted to a smaller part
of the computational domain. AlthoughCLAWPACK is not optimized for speed, the large
differences in runtime give a good indication of the efficiency of the front tracking method.
This efficiency can be further assessed by comparing with a scheme not based on Riemann
problems, e.g., the second-order, central difference scheme of Jiang and Tadmor [16]. Even
though this scheme has a very low complexity, the runtime was 10 times larger than for
DIMSPLIT on the same grid. The results produced (using the UNO limiter) were slightly less
dissipative than withCLAWPACK T2,2 minmod.
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4.5. A Word of Caution

Quirk [23, 24] has catalogued a number of instances where Godunov-type methods give
unreliable results. Some of these shortcomings can also be observed when using the front
tracking scheme.

The most serious is expansion shocks, as seen in Figs. 7–9. Quirk [24] presents an
example of this problem for a strong shock diffracting around a 90◦ corner, where for
instance Roe’s method gives an expansion shock and fails to converge to the correct solution.
The front tracking method performs similarly; in fact, the same problem is observed for
shock diffraction around other geometries, for instance over a half-diamond [24]. For finite
difference or volume methods this problem can be circumvented by locally using a more
defective approximative Riemann solver such as HLLE [24]. This changes the flavor of the
artificial dissipation that is implicit in the scheme and stabilizes the computations. The reason
for this may be that the general initial/boundary value problem for the Euler equations is
ill-posed in several space dimensions. If this is so, then schemes should rather approximate
the more fundamental Navier–Stokes equations. Several authors have discussed possible
instabilities arising from solving the exact Euler equations and the importance of introducing
correct dissipation mechanisms; see, e.g., Xu [30]. So far, we have not found a proper
workaround for the front tracking scheme.

Quirk [24] also discusses what he calls odd–even decoupling, which is seen for strong
shocks nearly aligned with the grid. When solving Riemann problems in the transverse
direction, where nothing should happen, small perturbations may grow unstably. Numerical
experiments indicate that the data reduction in the algorithm counteracts this tendency, but
does not eliminate it completely. If the perturbations exceed the cutoff value in the reduction,
they grow unstably.

5. DISCUSSION AND CONCLUSIONS

Front tracking has proved to be a very efficient numerical method for one-dimensional
problems and scalar problems in multidimensions. Here we have shown an unconditionally
stable extension to multidimensional systems and tested it on the Euler equations.

As all shock capturing methods, the method generates postshock oscillations. However,
the mechanism behind this phenomenon is easily explained for the one-dimensional method
and was discussed in Section 2. In two dimensions, oscillations prevent the use of large time
steps in the unconditionally stable method (as opposed to the scalar case [22]). However,
for moderateCFL numbers (1–4) the numerical diffusion (and the data reduction) in the
scheme seems to dampen the oscillations to an acceptable level.

A natural consequence of using the front tracking method is low-order and possible grid
effects due to the dimensional splitting. Moreover, some deficiencies have been pointed
out. Despite these limitations, the front tracking method produces surprisingly good results
and gives very sharp resolution of shocks even on coarse grids. Similar observations have
been made for the shallow water equations [12, 13] and the nonstrictly hyperbolic system
describing polymer flooding. Comparisons show that the method performs similarly to some
second-order methods with respect to accuracy but with higher efficiency.

The efficiency of the method may be improved by including one level of adaptive grid
refinement. Here the total variation inside coarse grid cells has been used as a monitor
function, but other choices are possible. Moreover, the method has a natural potential for
parallel implementation.
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